Birzeit University Mathematics Department

HW Math 234 2017/2018

Name	Number	Section
Q1) [60 points] Fill the blanks with true	(T) or false (F).	
] (1) If E an elementary matrix of typ	be II, then it is both nonsingula	ar and symmetric.
] (2) If A and B are $n \times n$ symmetric	matrices, then the matrix ${\cal AB}$	+ BA is also symmetric.
] (3) If A is an $n \times n$ singular matrix,	then the system $Ax = b$ has in	nfinitely many solutions.
] (4) If E is an elementary matrix of ty	ype III, then $E^{-1} = E$.	
] (5) If A and B are symmetric matric	ces, then AB is also symmetric	
] (6) If $A^2 = I$, then $A^{-1} = A$.		
] (7) The product of two elementary n	natrices is an elementary matri	ix.
] (8) Any $m \times n$ linear system $Ax = 0$	has a nontrivial solution if m	> n.
] (9) If A is a nonsingular matrix, then	n A^T is nonsingular.	
] (10) The sum of two triangular matr	rices is a triangular matrix.	
] (11) If E is an elementary matrix, the	nen E^T is also elementary of the	ne same type.
] (12) If A is a singular matrix, then t	he system $Ax = 0$ has infinite	number of solutions.
] (13) If A is a singular matrix and U	is the $RREF$ of A , then U mu	ast have al least one zero row.
] (14) Any invertible matrix is a produ	uct of elementary matrices.	
] (15) If A is symmetric and nonsingular	lar, then A^{-1} is symmetric.	
] (16) All 5×5 nonsingular matrices a	are row equivalent.	
] (17) If A is a square matrix and the	system $Ax = 0$ has a nontrivia	al solution, then A is nonsingular.
] (18) If A is an $n \times n$ nonsingular ma	trix, then A^3 is nonsingular.	
] (19) If A is a nonsingular matrix and	d α a nonzero scalar, then (αA)	$)^{-1} = \alpha A^{-1}.$
] (20) If A and B are $n \times n$ diagonal r	matrices, then $AB = BA$.	
] (21) If A is a 3×3 matrix with $a_1 =$	$a_2 = a_3$, then $Ax = 0$ has infinite	nitely many solutions.
] (22) If A and B are nonsingular $n\times$	n matrices, then $A+B$ is also	nonsingular.
] (23) If A is both symmetric and skew	w-symmetric, then A is a zero	matrix.
] (24) If the system $Ax = b$ is consiste	nt, then b is a linear combinate	ion of the columns of A .
] (25) A square matrix A is nonsingular	ar iff its RREF is the identity	matrix.
] (26) If b can be written as a linear cor $Ax = b$ has infinitely many solution		ingular matrix A , then the system
] (27) If A, B, C are $n \times n$ nonsingular	r matrices, then $A^2 - B^2 = (A$	(A+B).
] (28) If b is any column of the matrix	A, then the system $Ax = b$ is	consistent.

[(29) The sum of a symmetric and skew-symmetric matrices is skew-symmetric.

- [30) Let A be nonsingular. If A is skew-symmetric, then A^{-1} is skew-symmetric.
- [31) Let A be nonsingular. If A is upper triangular, then A^{-1} is upper triangular.
- [] (32) Let A be nonsingular. If A is diagonal, then A^{-1} is diagonal.
- [] (33) If A is a 3×3 matrix and $(2,3,-1)^T$ is a solution to Ax = 0, then $(-6,-9,3)^T$ is also a solution.
 - (34) If the square system Ax = b has more than one solution, then A is singular.
- (35) If A is a 4×4 nonsingular matrix, then AA^T is both symmetric and nonsingular.
- [] (36) If A is a 4×4 matrix and Ax = 0 has only the zero solution, then A is row equivalent to I.
- [37] If A is a nonsingular matrix, then $(A^T)^T = (A^{-1})^{-1}$.
- [] (38) Every linear system with eight unknowns in three equations is consistent.
- [] (39) If the augmented matrix of a 3×2 system is row equivalent to I, then this system is inconsistent.
- (40) The identity matrix is row equivalent to any elementary matrix of the same size.