Birzeit University
 Mathematics Department

Math 234
\qquad
\qquad Section \qquad
(Q1) [60 points] Fill the blanks with true (T) or false (F).
] (1) If E an elementary matrix of type II, then it is both nonsingular and symmetric.
] (2) If A and B are $n \times n$ symmetric matrices, then the matrix $A B+B A$ is also symmetric.
] (3) If A is an $n \times n$ singular matrix, then the system $A x=b$ has infinitely many solutions.
] (4) If E is an elementary matrix of type III, then $E^{-1}=E$.
] (5) If A and B are symmetric matrices, then $A B$ is also symmetric.
] (6) If $A^{2}=I$, then $A^{-1}=A$.
] (7) The product of two elementary matrices is an elementary matrix.
] (8) Any $m \times n$ linear system $A x=0$ has a nontrivial solution if $m>n$.
] (9) If A is a nonsingular matrix, then A^{T} is nonsingular.
] (10) The sum of two triangular matrices is a triangular matrix.
] (11) If E is an elementary matrix, then E^{T} is also elementary of the same type.
] (12) If A is a singular matrix, then the system $A x=0$ has infinite number of solutions.
] (13) If A is a singular matrix and U is the $R R E F$ of A, then U must have al least one zero row.
] (14) Any invertible matrix is a product of elementary matrices.
] (15) If A is symmetric and nonsingular, then A^{-1} is symmetric.
] (16) All 5×5 nonsingular matrices are row equivalent.
] (17) If A is a square matrix and the system $A x=0$ has a nontrivial solution, then A is nonsingular.
] (18) If A is an $n \times n$ nonsingular matrix, then A^{3} is nonsingular.
] (19) If A is a nonsingular matrix and α a nonzero scalar, then $(\alpha A)^{-1}=\alpha A^{-1}$.
] (20) If A and B are $n \times n$ diagonal matrices, then $A B=B A$.
] (21) If A is a 3×3 matrix with $a_{1}=a_{2}=a_{3}$, then $A x=0$ has infinitely many solutions.
] (22) If A and B are nonsingular $n \times n$ matrices, then $A+B$ is also nonsingular.
] (23) If A is both symmetric and skew-symmetric, then A is a zero matrix.
] (24) If the system $A x=b$ is consistent, then b is a linear combination of the columns of A.
] (25) A square matrix A is nonsingular iff its RREF is the identity matrix.
] (26) If b can be written as a linear combination of the columns of a singular matrix A, then the system $A x=b$ has infinitely many solutions.
] (27) If A, B, C are $n \times n$ nonsingular matrices, then $A^{2}-B^{2}=(A-B)(A+B)$.
] (28) If b is any column of the matrix A, then the system $A x=b$ is consistent.
] (29) The sum of a symmetric and skew-symmetric matrices is skew-symmetric.
] (30) Let A be nonsingular. If A is skew-symmetric, then A^{-1} is skew-symmetric.
] (31) Let A be nonsingular. If A is upper triangular, then A^{-1} is upper triangular.
] (32) Let A be nonsingular. If A is diagonal, then A^{-1} is diagonal.
] (33) If A is a 3×3 matrix and $(2,3,-1)^{T}$ is a solution to $A x=0$, then $(-6,-9,3)^{T}$ is also a solution.
] (34) If the square system $A x=b$ has more than one solution, then A is singular.
] (35) If A is a 4×4 nonsingular matrix, then $A A^{T}$ is both symmetric and nonsingular.
] (36) If A is a 4×4 matrix and $A x=0$ has only the zero solution, then A is row equivalent to I.
] (37) If A is a nonsingular matrix, then $\left(A^{T}\right)^{T}=\left(A^{-1}\right)^{-1}$.
] (38) Every linear system with eight unknowns in three equations is consistent.
] (39) If the augmented matrix of a 3×2 system is row equivalent to I, then this system is inconsistent.
] (40) The identity matrix is row equivalent to any elementary matrix of the same size.

